Design, Synthesis, and Structure-Activity Relationship Studies of Novel 2,4,6-Trisubstituted-5pyrimidinecarboxylic Acids as Peroxisome Proliferator-Activated Receptor γ (PPAR γ) Partial Agonists with Comparable Antidiabetic Efficacy to Rosiglitazone

Shigeki Seto,* Kyoko Okada, Koichi Kiyota, Shigeki Isogai, Maki Iwago, Takehiro Shinozaki, Yoshiaki Kitamura, Yasushi Kohno, and Koji Murakami

Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
Received April 11, 2010

Abstract

A series of novel 2,4,6-trisubstitutedpyrimidine-5-carboxylic acid derivatives were designed and synthesized with the intent of producing a peroxisome proliferator-activated receptor γ (PPAR γ) partial agonist for antidiabetic agents. A pharmacophore-driven approach of in-house screening identified compound 7 , which led to the identification of compound $\mathbf{9}$ featuring a 2,4,6-trisubstituted pyrimidine-5-carboxylic acid core. Structure-activity relationship studies of 9 resulted in identifying 4,6-bisbenzylthio-2-methylthiopyrimidine-5-carboxylic acid (50) as the most attractive of all the screened compounds. The X-ray cocrystal structure of $\mathbf{5 0}$ bound on PPAR γ revealed that the key hydrogen bond interactions, which are not related to the activation function $2(\mathrm{AF}-2)$ site, are different from those of the full agonist. Compound $\mathbf{5 0}$ showed typical $\operatorname{PPAR} \gamma$ partial agonist properties in the $\operatorname{PPAR} \gamma$ GAL4 functional assay and weaker differentiation of adipocytes in 3T3-L1 cells than observed with rosiglitazone. Furthermore, $\mathbf{5 0}$ displayed comparable antidiabetic efficacy with rosiglitazone in $\mathrm{db} / \mathrm{db}$ mice, although its potency is 10 -fold weaker than that of rosiglitazone.

Introduction

The peroxisome proliferator-activated receptors (PPARs) ${ }^{a}$ are ligand-activated transcription factors belonging to the nuclear receptor superfamily. ${ }^{1}$ So far, there are three PPAR subtypes encoded by distinct genes: PPAR α (NR1C1), $\operatorname{PPAR} \delta(N R 1 \mathrm{C} 2)$, and PPAR γ (NR1C3). ${ }^{2}$ These receptors are important regulators in multiple physiological pathways such as glucose homeostasis, fatty acid metabolism, inflammation, and cellular differentiation. ${ }^{3,4}$
$\operatorname{PPAR} \gamma$ is also the target protein for the currently marketed thiazolidinedione (TZD) class of antidiabetic agents, rosiglitazone and pioglitazone. ${ }^{5,6}$ Although this type of $\operatorname{PPAR} \gamma$ full agonist modestly ameliorates hyperglycemia, undesirable side effects including peripheral edema and weight gain are also associated with these drugs. ${ }^{7,8}$ Therefore, a recent drug-discovery program has focused on identifying $\operatorname{PPAR} \gamma$ partial agonists that promise to surpass the potential of currently available PPAR γ full agonists if their desirable efficacy profile can be maintained, while their negative side effects are minimized. ${ }^{9-13}$ On the basis of this concept, several PPAR γ partial agonists have been developed. ${ }^{14-19}$

[^0]Structurally, the majority of the known PPAR partial agonists can be classified into three types, types $\mathrm{A}-\mathrm{C}$ in Figure 1. Type A, which includes 1 (balaglitazone), ${ }^{14} 2$ (FK614), ${ }^{15}$ and 3 (MK-0533), ${ }^{16}$ has similar structural features as $\operatorname{PPAR} \gamma$ full agonists such as rosiglitazone, which is made up of an acidic head part and a lipophilic tail part. Compound $\mathbf{1}$ is currently included in an ongoing phase III clinical trial. Type B, which includes 4 (metaglitazen) ${ }^{17}$ and 5 (nTZDpa), ${ }^{9}$ has two lipophilic parts on either side of an acidic center. Compound $\mathbf{4}$, the most advanced drug candidate of this type, is currently included in a phase III clinical trial. The acidic parts of the Type A and Type B partial agonists are known to be important for key hydrogen bond interactions with PPAR $\gamma .{ }^{20}$ In contrast, Type C, which includes 6 (L-764406), ${ }^{21}$ usually has no acidic part to form hydrogen bonds with PPAR γ. This type of partial agonist has a reactive leaving group on an electron-deficient ring; this leaving group is important to the formation of covalent interactions with PPAR γ. Compound 6 is known to bind directly to Cys313 in helix 3 of the LBD of human $\operatorname{PPAR} \gamma$ through the loss of a chlorine atom. To the best of our knowledge, there has been no report of a clinical trial involving Type C partial agonists.

Our research on PPAR γ partial agonists has been initiated from our screening identification of compound 7 , which possesses a new pyrimidine-5-carboxamide skeleton, as shown in Scheme 1. On the basis of the chemical structure, 7 can probably be categorized as a Type C partial agonist and can interact with PPAR γ in a covalent fashion through the loss of chlorine. As expected, compound $\mathbf{8}$, a related analogue compound lacking the chlorine, was inactive in this assay. Covalent binding may cause toxicological risks over the long-term; ${ }^{22}$

Figure 1. Structural classification of known $\operatorname{PPAR} \gamma$ partial agonists.

Scheme 1

however, the novel structural features of compound 7 led us to embark on further investigation. With the intent of finding a noncovalent binder, we next focused our attention on the similarity of the chemical structure between $\mathbf{7}$ and $\mathbf{5}$, which is categorized as Type B. We synthesized $\mathbf{9}$ by transference of the benzyl amide group of 7 to the 4 -position on the pyrimidine ring and the introduction of a sulfur atom from one of the Type B compounds, $\mathbf{5}$, as in Scheme 1. Obviously, $\mathbf{9}$ belongs to the Type B category, which has two lipophilic parts on either side of an acidic center, with no reactive leaving group. Moreover, 9 showed a 25 -fold higher potency in the transactivation assay than 7.

We wish to report herein the details of structure-activity relationship (SAR) efforts toward further optimization of a series of novel 2,4,6-trisubstituted-5-pyrimidinecarboxylic acid derivatives. We report the X-ray cocrystal structure of selected compounds bound to the PPAR γ to reveal important molecular insight into the ligand-binding site interactions and encouraging in vivo efficacy results in $\mathrm{db} / \mathrm{db}$ mice.

Chemistry

Chloropyrimidine analogues, common key intermediates, were synthesized as outlined in Scheme 2. The coupling of
dichloride 11 with phenyl methanethiol under basic conditions afforded the benzylthio ether 12. Similar conditions as those used in the preparation of $\mathbf{1 2}$ were used for the synthesis of benzylamine 13. Further transformation of $\mathbf{1 3}$ took place in order to introduce various kinds of amino groups at C-2. Oxidation of the sulfur atom of $\mathbf{1 3}$ using m CPBA afforded methyl sulfone 14; a subsequent displacement reaction of a sulfinyl group of $\mathbf{1 4}$ with various amine nucleophiles in toluene provided 2 -aminopyrimidines $\mathbf{1 5 - 1 8}$, which have a chlorine atom at the 4-position for further transformation. ${ }^{23}$

Some of the 2-alkylthioanalogues were prepared using the method described in Scheme 3. Alkylation ${ }^{24}$ of barbituric acid 19 with butyl bromide or octyl bromide using sodium hydroxide afforded 2-alkylthiopyrimidines 20 and 21, respectively. The introduction of a carboxylic acid moiety into $\mathbf{2 0}$ and 21 using CO_{2} and LDA as well as subsequent methylation with iodomethane gave esters, which were coupled with phenyl methanethiol to provide thioethers 26 and 27, respectively.

The trisubstituted pyrimidine $\mathbf{3 1}$ was prepared as shown in Scheme 4. Bell's condition ${ }^{25}$ was used for the preparation of carboxylic acid 29 , which was transformed to thioether $\mathbf{3 1}$ by the methylation of $\mathbf{2 9}$ and a subsequent coupling reaction of 30 with phenyl methanethiol.

Scheme $\mathbf{2}^{a}$

15: $\mathrm{R}^{2}=\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}$
16: $\mathrm{R}^{2}=\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{Me}$
17: $\mathrm{R}^{2}=\mathrm{N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}$
18: $\mathrm{R}^{2}=\mathrm{N}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right)_{2}$
${ }^{a}$ Reagents: (a) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, 1 h ; (b) $\mathrm{PhCH}_{2} \mathrm{SH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}$; (c) $\mathrm{PhCH}_{2} \mathrm{NH}_{2}, \mathrm{Et} \mathrm{H}_{3} \mathrm{~N}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}$; (d) $m \mathrm{CPBA}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (e) $\mathrm{R}^{2} \mathrm{H}$, toluene, $0^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

Scheme 3^{a}

20,22,24,26: $\mathrm{R}^{1}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}$
21,23,25,27: $\mathrm{R}^{1}=\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Me}$
${ }^{a}$ Reagents: (a) (i) butyl bromide or octyl bromide, 3 N NaOH , EtOH, reflux, 2 h , (ii) POCl_{3}, N, N-dimethylaniline, reflux, 1 h ; (b) (i) LDA, THF, $-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$, (ii) $\mathrm{CO}_{2}, 10 \mathrm{~min}$; (c) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, 2 h ; (d) $\mathrm{PhCH}_{2} \mathrm{SH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, 1 h .

Scheme 4^{a}

${ }^{a}$ Reagents: (a) POCl_{3}, DMF, $100{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (b) NaClO_{2}, 2-methyl-2butene, t - $\mathrm{BuOH}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (c) MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, 2 h ; (d) $\mathrm{PhCH}_{2} \mathrm{SH}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, 1 h .

Having the chlorides $\mathbf{1 0} \mathbf{- 1 8}, \mathbf{2 6}, \mathbf{2 7}, \mathbf{3 1}$ in hand, the target pyrimidine-5-carboxylic acids $\mathbf{9}, \mathbf{3 2 - 5 0}$ were synthesized as shown in Schemes 5-7. The nucleophilic displacement reaction of chlorides $\mathbf{1 2}, \mathbf{2 6}, \mathbf{2 7}, 31$ with various kinds of amines, and then subsequent hydrolysis with potassium hydroxide gave 9, 32-43, respectively (Scheme 5). Similarly, chlorides 13, 15 underwent coupling with benzyl alcohol, phenyl methanethiol and subsequent hydrolysis with potassium hydroxide afforded the corresponding carboxylic acids $\mathbf{4 4}, 45$ (Scheme 6). A one-pot procedure was used for the synthesis of the target compounds $\mathbf{4 6} \mathbf{- 4 8}$ by heating the reaction mixture of phenyl methanethiol and chloride $\mathbf{1 6} \mathbf{- 1 8}$ in DMF at $80^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{26}$ Biaryl analogue 49 was prepared by using a Suzuki coupling reaction ${ }^{27}$ of chloride $\mathbf{1 3}$ with 2-thienoboronic acid, and then subsequent hydrolysis with potassium hydroxide (Scheme 6). Scheme 7 shows the synthesis of symmetrical compound 50. Bisbenzylthio ether $\mathbf{5 0}$ was prepared from the direct coupling between carboxylic acid 10 and 2 equiv of phenyl methanethiol.

Results and Discussion

The PPAR γ transactivation activation activities of the synthesized compounds were determined, and the results are summarized in Tables 1 and 2, together with the results for rosiglitazone. The $\operatorname{PPAR} \gamma$ transactivation value was assessed by potency and efficacy using PPAR-GAL4 chimeric receptors in transiently transfected CHO-K1 cells. Efficacy values were calculated as a percentage of the maximal reporter activity value of rosiglitazone.

The results shown in Table 1 reveal the effects of the length and bulkiness of the alkyl chain of the R^{1} group. The des-(methylthio) analogue 43 was found to be inactive on $\operatorname{PPAR} \gamma$, while the parent methylthio analogue 9 resulted in a significant activation of the receptor $\left(\mathrm{EC}_{50}=0.18 \mu \mathrm{M}\right)$. Further elongation of the alkyl chain of the R^{1} group, the propyl group as in 41, and the octyl group as in $\mathbf{4 2}$, led to an increase in efficacy: 54\% (9, methyl), 76% (41, butyl), and 89% ($\mathbf{4 2}$, octyl), respectively, without a significant change in EC_{50}, which ranged from $0.18-0.95 \mu \mathrm{M}$. A similar tendency in efficacy was observed for the alkylamino derivatives 45 (65%, butyl) and 46 (85%, heptyl). These results suggest that the length of the alkyl chain is important for adjusting the efficacy of $\operatorname{PPAR} \gamma$ activation. We anticipate that these compounds, with a variety of efficacies, may bind to different sites of $\operatorname{PPAR} \gamma$, on the basis of the previously reported binding mode of indole analogues with different efficacies. ${ }^{20,28}$

The bulky dibutylamino analogue 48 showed drastically reduced potency ($\mathrm{EC}_{50}>10 \mu \mathrm{M}$) over monobutylamino analogue 45.

The effects of the substituents in positions 4 and 6 of the pyrimidine nucleus were examined, as shown in Table 2.

Scheme 5^{a}

${ }^{a}$ Reagents: (a) $\mathrm{R}^{2} \mathrm{NH}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, DMF, rt, 2 h ; (b) KOH , THF-MeOH, reflux, 4 h.

Scheme 6^{a}

${ }^{a}$ Reagents: (a) (i) $\mathrm{R}^{2} \mathrm{H}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, 1 h , (ii) KOH , THF-MeOH, reflux, 4 h ; (b) $\mathrm{PhCH}_{2} \mathrm{SH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}$. (c) (i) $\mathrm{R}^{2} \mathrm{~B}(\mathrm{OH})_{2}$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, toluene, dioxane, $\mathrm{H}_{2} \mathrm{O}$, reflux, 2 h , (ii) KOH , THF-MeOH, reflux, 4 h .

Scheme 7^{a}

${ }^{a}$ Reagents: (a) $\mathrm{PhCH}_{2} \mathrm{SH}$ or $\mathrm{PhCH}_{2} \mathrm{OH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, \mathrm{rt}, 1 \mathrm{~h}$.

Table 1. Effect of C-2 Substituents

compd	R^{1}	$\mathrm{EC}_{50}(\mu \mathrm{M})^{a}$	efficacy $(\%)^{b}$
43	H	>10	33
9	SMe	0.18	54
41	$\mathrm{~S}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}$	0.55	76
42	$\mathrm{~S}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{Me}$	0.95	89
45	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}$	0.47	65
46	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{Me}$	0.25	85
47	$\mathrm{~N}\left(\mathrm{Me}^{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right.$	0.42	57
48	$\mathrm{~N}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right)_{2}$	>10	71

${ }^{a} \mathrm{EC}_{50}$ values were the molar concentration of the test compounds that cause 50% of the maximal reporter activity. ${ }^{b}$ Efficacy values were calculated as a percentage of rosiglitazone.

We first examined the effects of the phenyl ring on the benzylamino moiety. The length of the linker between the terminal phenyl ring and the nitrogen atom attached to the core pyrimidine ring appears to play an important role in

Table 2. Effects of C-4 and 6 Substituents

compd	R^{1}	R^{2}	EC_{50} $(\mu \mathrm{M})^{a}$	efficacy $(\%)^{b}$
32	NHPh	$\mathrm{SCH}_{2} \mathrm{Ph}$	1.6	58
9	$\mathrm{NHCH}_{2} \mathrm{Ph}$	$\mathrm{SCH}_{2} \mathrm{Ph}$	0.18	54
33	$\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{SCH}_{2} \mathrm{Ph}$	0.67	50
34	$\mathrm{NHCH}_{2}-2$-pyridyl	$\mathrm{SCH}_{2} \mathrm{Ph}$	0.25	35
35	NHCH_{2}-3-pyridyl	$\mathrm{SCH}_{2} \mathrm{Ph}$	0.74	55
36	$\mathrm{NHCH}_{2}-4$-pyridyl	$\mathrm{SCH}_{2} \mathrm{Ph}$	2.7	45
37	NHMe^{2}	$\mathrm{SCH}_{2} \mathrm{Ph}$	>10	37
38	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}$	$\mathrm{SCH}_{2} \mathrm{Ph}$	>10	35
39	${\mathrm{NH}-\mathrm{cyclopropyl}^{2-}}^{\mathrm{SCH}_{2} \mathrm{Ph}}$	1.8	25	
40	$\mathrm{NHCH}_{2}-$	$\mathrm{SCH}_{2} \mathrm{Ph}$	0.30	65
	cyclohexyl			
44	$\mathrm{NHCH}_{2} \mathrm{Ph}$	$\mathrm{OCH}_{2} \mathrm{Ph}$	2.3	50
49	$\mathrm{NHCH}_{2} \mathrm{Ph}$	2-thienyl	>10	ia ${ }^{c}$
50	$\mathrm{SCH}_{2} \mathrm{Ph}$	$\mathrm{SCH}_{2} \mathrm{Ph}$	0.14	66
Rosiglitazone			0.10	100

${ }^{a} \mathrm{EC}_{50}$ values were the molar concentration of the test compounds that cause 50% of the maximal reporter activity. ${ }^{b}$ Efficacy values were calculated as a percentage of rosiglitazone. " "ia" means inactive at a concentration of 10 mM .
the potency. The anilino analogue 32 and the phenethylamino analogue 33 showed 9 - and 4 -fold less potency than the parent benzyl analogue 9, respectively. The 2-pyridyl analogue 34 retained the same level of potency compared to $\mathbf{9}$. Shifting the nitrogen on the pyridine ring to the 3 - or 4 -position resulted in a decrease in potency (4-fold, 35; 15 -fold, 36).

The introduction of various kinds of substituents onto the terminal phenyl ring resulted in comparable potency (see $\mathbf{S 1}-\mathbf{S 1 0}$ in Supporting Information). For example, the 4-methoxy analogue, 4-methyl analogue, 4-chloro analogue, 4-phenyl analogue, 4-tert-butyl analogue, and 4-dimethylamino analogue showed similar potencies compared to 9 at the range of $\mathrm{EC}_{50}=0.27-0.50$, indicating that the presence of a substituent on the phenyl ring is not crucial to the interaction with PPAR γ. Removal of the terminal phenyl ring negatively affected potency. Most of the alkyl analogues without a terminal aromatic ring, for example, $\mathbf{3 7}$ and $\mathbf{3 8}$ as well as cyclopropyl analogue $\mathbf{3 9}$, did not respond to $\operatorname{PPAR} \gamma$. However, the cyclohexylmethyl analogue 40 maintained its potency at almost the same level as the parent 9 $\left(\mathrm{EC}_{50}=0.30 \mu \mathrm{M}\right)$.

Next, the effects of the benzylthio moiety (R^{2}) were examined. Conversion of the sulfur on the benzylthio moiety to oxygen negatively affected the potency (9 vs 44). Thienyl analogue 49, a conformationally restricted analogue, showed a dramatic loss of activity.

Scheme 8

$E C_{50}=0.18 \mu \mathrm{M}$
\% max activation: 54\%
Water solubility: $<1 \mu \mathrm{~g} / \mathrm{mL}$

On the basis of the results of the SAR examination shown in Tables 1 and 2, parent compound 9 appears to have the greatest potency in this series of compounds. However, 9 showed extremely poor water solubility (less than $1 \mu \mathrm{~g} / \mathrm{mL}$), which could obstruct the absorption process during oral administration. We hypothesized that hydrogen bonding could occur between a carboxylic acid group and benzylamine NH of $\mathbf{9}$, which could lead to low water solubility in Scheme 8. To test this hypothesis, we synthesized the bisbenzylthio analogue $\mathbf{5 0}$. As a result, not only did $\mathbf{5 0}$ show good water solubility ($43.7 \mu \mathrm{~g} / \mathrm{mL}$), it showed PPAR γ agonist activity similar to that of $\mathbf{9}$. We therefore selected $\mathbf{5 0}$ as the most attractive compound for further biological examinations.

To clarify the hydrogen bond network between $\mathbf{5 0}$ and $\operatorname{PPAR} \gamma$, an X-ray cocrystal structure of $\mathbf{5 0}$ bound to an active $\operatorname{PPAR} \gamma$ site was obtained by X-ray crystallography to a resolution of $3.0 \AA$, as shown in Figure 2. Analysis of the binding mode reveals that the oxygen atom of the carboxylic acid part of $\mathbf{5 0}$ forms a hydrogen bond with the carboxylic acid side chain of Glu343; the distance between the two oxygen atoms is $2.95 \AA$. The oxygen atom of $\mathbf{5 0}$ also interacts with Arg288 through a hydrogen bond; the distance between the oxygen atom and the nitrogen atom of the guanidinium group of $\operatorname{Arg} 288$ is $2.76 \AA$. Thus, the acidic part of $\mathbf{5 0}$ does not directly interact with three key amino acid residues, H323, H449, and Y473, located on the C-terminal activation function 2 (AF-2) helix and interact with acidic head groups of synthetic PPAR γ full agonists. ${ }^{29}$

The species difference of $\mathbf{5 0}$ in PPAR γ transactivation was examined using dose response analysis in the human and mice PPAR γ-GAL4 functional assay. As shown in Table 3, 50 showed a partial agonist profile to both human and mice $\operatorname{PPAR} \gamma$ receptors with a relative efficacy of $50-60 \%$ of

Figure 2. Hydrogen bond network of compound $\mathbf{5 0}$ in complex with PPAR γ.
rosiglitazone. Compound $\mathbf{5 0}$ also showed an antagonistic profile with $\mathrm{IC}_{50}=1.79 \mu \mathrm{M}$ when treated in the presence of $1 \mu \mathrm{M}$ rosiglitazone. ${ }^{30}$ Similar results were observed when mice and rat $\operatorname{PPAR} \gamma$ were used. These data indicate that $\mathbf{5 0}$ displayed typical PPAR γ partial agonist properties without a species difference.

Partial agonists exhibit reduced ability to recruit coactivators, diminished adipogenic capacity, and attenuated gene signatures in cultured adipocytes. ${ }^{31,32}$ To characterize the profile of $\mathbf{5 0}$, we examined the ability to promote adipogenesis in 3T3L1 cells. ${ }^{33}$ We first examined the levels of adipose fatty acid binding protein (aP 2) mRNA expression in differentiating 3T3-L1 adipocytes (blast and mature), as shown in Figure 3. ${ }^{34,35}$ Rosiglitazone, a full agonist, increased aP2 mRNA expression in a dose-dependent manner in both blast and mature 3T3-L1 cell lines. In contrast, $\mathbf{5 0}$ did not affect the expression of mRNA in blast cells. A partial increasing effect was observed in mature cells over rosiglitazone. Next, we also examined the effects of $\mathbf{5 0}$ on adipocyte differentiation in murine fibroblast 3T3-L1 cells, as shown in Figure 4. Rosiglitazone promoted lipid accumulation according to the results of oil red O staining, while the effects of $\mathbf{5 0}$ were found to be very weak, suggesting that $\mathbf{5 0}$ does not induce weight and adipose tissue gain.

Before conducting in vivo experiments in diabetic mice, the pharmacokinetic profile of $\mathbf{5 0}$ in mice was evaluated and the results are shown in Table 4. Compound $\mathbf{5 0}$ showed low total clearance (CL, $1.88 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$), moderate oral bioavailability (35.8%), but a short half-life $\left(t_{1 / 2}=0.76 \mathrm{~h}\right)$, suggesting that 50 is an orally bioavailable compound.

The in vivo efficacy of $\mathbf{5 0}$ was examined using $\mathrm{db} / \mathrm{db}$ mice undergoing daily oral administration for 7 days. ${ }^{36}$ As shown in Figure 5A, 50 dose-dependently lowered plasma glucose levels and exhibited excellent efficacy in $\mathrm{db} / \mathrm{db}$ mice. Compound 50 exhibited 56% and 77% glucose normalization at doses of 30 and $100 \mathrm{mg} / \mathrm{kg}$, respectively, compared with lean control animals. These responses are equivalent to the effects

Table 3. Species Difference of $\mathbf{5 0}$ in the Transactivation of PPAR γ Isoform

	transactivation a		
species	$\mathrm{EC}_{50}(\mu \mathrm{M})$	efficacy $(\%)$	$\mathrm{IC}_{50}(\mu \mathrm{M})$
human	0.108	59	1.79
mice	0.158	59	1.77
rat	0.158	45	0.539

${ }^{a}$ Compounds were screened for agonist or antagonist activity on PPAR γ-GAL4 chimeric receptors in transiently transfected CHO-K1 cells in the absence or presence of $1 \mu \mathrm{M}$ rosiglitazone.
exhibited by 3 and $10 \mathrm{mg} / \mathrm{kg}$ doses, respectively, of rosiglitazone. Partial activation of PPAR γ probably brings about the modest potency of $\mathbf{5 0}$ relative to the PPAR γ full agonist, rosiglitazone. ${ }^{37}$

Some PPAR γ partial agonists have been reported to cause no weight gain in $\mathrm{db} / \mathrm{db}$ mice. ${ }^{38}$ In contrast, some reports indicate that weight gain has been observed, and that even the tested compounds showed a decreased induction of adipogenesis in cells. ${ }^{39}$ Unfortunately, there was no significant difference in the weight gain profiles between $\mathbf{5 0}$ and rosiglitazone after 7-day treatment of $\mathrm{db} / \mathrm{db}$ mice (Figure 5B).

Conclusion

In conclusion, we have succeeded in the design, synthesis, and evaluation of 2,4,6-trisubstitutedpyrimidine-5-carboxylic acid derivatives based on the in-house screening hit of compound 7. Structure-activity relationship studies have revealed that (1) the maximum activation level for PPAR γ agonism can be adjusted by modulation of the length of the alkyl group at the 2 -position on pyrimidine; (2) sulfur atoms at the 4 - and 6 -positions contribute to the potency and chemical properties, including water solubility. Among the synthesized pyrimi-dine-5-carboxylic acid derivatives, $\mathbf{5 0}$ was selected for further evaluation. The X-ray cocrystal structure of $\mathbf{5 0}$ on PPAR γ revealed that the key hydrogen bond interactions, which are not related to the AF-2 site, are different from those of the full agonist. Pharmacological study of $\mathbf{5 0}$ demonstrated its excellent antidiabetic activity in $\mathrm{db} / \mathrm{db}$ mice. These results indicate that $\mathbf{5 0}$ is attractive candidate as a new lead compound for design of more potent PPAR γ partial agonist.

Experimental Section

Chemistry. Melting points were determined with a Yamato MP-500 melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR

Figure 4. Visualization of lipid accumulation in 3T3-L1 cells by oil red O staining. After reaching confluence, cells were stimulated with $1 \mu \mathrm{M}$ dexamethasone, $1 \mu \mathrm{M}$ IBMX, and $2 \mu \mathrm{M}$ insulin for 7 days. The DEX/MIX medium was then removed, and cells were treated for 10 days with the following ligands: C , vehicle; D , rosiglitazone; E , compound 50.

A: Blast

B: Mature

Figure 3. Effects of rosiglitazone and $\mathbf{5 0}$ on the differentiation of $3 \mathrm{~T} 3-\mathrm{L} 1$ cells. Total RNA was extracted after 7 days for A, and after 10 days for B. Reverse transcription and real-time PCR were on cDNAs with an aP2-specific sample. One microgram of total RNA was used in each case.

Table 4. Pharmacokinetic Profiles of $\mathbf{5 0}$ in Mice

$C_{10 \min }(\mu \mathrm{~g} / \mathrm{mL})^{a}$	$\mathrm{CL}(\mathrm{mL} / \mathrm{mim} / \mathrm{kg})^{a}$	$\mathrm{vd}(\mathrm{L} / \mathrm{kg})^{a}$	$t_{1 / 2}(\mathrm{~h})^{a}$	AUC iv $(\mu \mathrm{g} * \mathrm{~h} / \mathrm{mL})^{a}$	AUC po $(\mu \mathrm{g} * \mathrm{~h} / \mathrm{mL})^{b}$	$F(\%)$
6.89	1.88	0.12	0.76	8.86	3.17	35.8

${ }^{a}$ These values were measured in mice after iv administration $(1 \mathrm{mg} / \mathrm{kg}) .{ }^{b}$ These values were measured in mice after po administration ($1 \mathrm{mg} / \mathrm{kg}$).

Figure 5. Effects of rosiglitazone and compound $\mathbf{5 0}$ with oral administration in $\mathrm{db} / \mathrm{db}$ mice after 7 days. Data are shown as mean $\pm \mathrm{SEM} n=5$. (A) Plasma glucose. (B) Body weight gain.
spectra were measured in CDCl_{3} or DMSO- d_{6} with TMS and the solvent peak as internal standards, on a JEOL ECA-400 $(400 \mathrm{MHz})$ spectrometer. Mass spectra (MS) were obtained on a Hitachi M-2000 mass spectrometer. Column chromatography was carried out on Merck silica gel 60. Analytical thin-layer chromatography (TLC) was performed on Merck precoated silica gel 60F254 plates, and the compounds were visualized by UV illumination (254 nm) or by heating after spraying with phosphomolybdic acid in ethanol. The data for elemental analysis are within $\pm 0.4 \%$ of theoretical values and were determined by a Yanaco CHN corder MT-5. All tested compounds had a purity of at least 95%.

Methyl 4-(Benzylthio)-6-chloro-2-(methylthio)pyrimidine-5carboxylate (12). To a solution of $\mathbf{1 1}^{23}(17.6 \mathrm{~g}, 69.5 \mathrm{mmol})$ in DMF (100 mL) were added potassium carbonate $(9.70 \mathrm{~g}$, $70.2 \mathrm{mmol})$ and phenymethanethiol ($8.68 \mathrm{~g}, 69.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 h . The reaction mixture was diluted with ethyl acetate, then washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography (hexane/ $\mathrm{AcOEt}=5: 1$) of the residue gave $12(22.9 \mathrm{~g}, 97 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.56(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.44(2 \mathrm{H}, \mathrm{s})$, 7.24-7.40 (5H, m). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}\right)$340.0107, found 340.0117.

Methyl 4-(Benzylamino)-6-chloro-2-(heptylamino)pyrimidine-5-carboxylate (16). To a solution of $\mathbf{1 4}^{23}(130 \mathrm{mg}, 0.365 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was added a mixture of triethylamine $(20 \mu \mathrm{~L})$ and heptylamine ($42.1 \mathrm{mg}, 0.365 \mathrm{mmol}$) in toluene $(0.5 \mathrm{~mL})$ portion-wise under ice cooling. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h . The resulting mixture was diluted with ethyl acetate and then washed with water and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography (hexane/ $\mathrm{AcOEt}=5: 1$) of the residue gave $\mathbf{1 6}(74.1 \mathrm{mg}, 52 \%)$ as a colorless foam. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 1.20-1.40(8 \mathrm{H}$, m), $1.45-1.55(2 \mathrm{H}, \mathrm{m}), 3.30-3.45(2 \mathrm{H}, \mathrm{m}), 3.84(3 \mathrm{H}, \mathrm{s})$, $4.60-4.72(2 \mathrm{H}, \mathrm{m}), 5.05-5.33(1 \mathrm{H}, \mathrm{br}), 7.22-7.37(5 \mathrm{H}, \mathrm{m})$, 8.58-8.97 ($1 \mathrm{H}, \mathrm{br}$). HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{O}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 390.1823$, found 390.1816.

2-(Butylthio)-4,6-dichloro-pyrimidine (20). To a mixture of thiobarbituric acid ($5.22 \mathrm{~g}, 36.2 \mathrm{mmol}$) in $\mathrm{EtOH}(50 \mathrm{~mL})$ was added $3 \mathrm{~N} \mathrm{NaOH}(12 \mathrm{~mL})$ at room temperature, and the mixture was stirred under reflux for 1 h . The mixture was added iodobutane $(4.20 \mathrm{~mL}, 36.9 \mathrm{mmol})$ at room temperature, and the mixture was stirred under reflux for 2 h . The mixture was cooled to room temperature. The precipitate was formed and collected by filtration, and then dried in vacuo. The mixture of
the cake with phosphoryloxy chloride ($15.0 \mathrm{~mL}, 0.161 \mathrm{~mol}$) and N, N-dimethylaniline ($5.2 \mathrm{~mL}, 41.0 \mathrm{mmol}$) was refluxed for 1 h . The mixture was poured into ice-water and extracted with ethyl acetate, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography (hexane/AcOEt $=$ 30:1) of the residue gave $20(1.61 \mathrm{~g}, 19 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.48(2 \mathrm{H}$, $\mathrm{qt}, J=7.3$ and 7.3 Hz$), 1.71(2 \mathrm{H}, \mathrm{tt}, J=7.3$ and 7.3 Hz$), 3.15$ $(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{s})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 237.0020$, found 236.9995.

4,6-Dichloro-2-(octylthio)pyrimidine (21). The title compound $21(696 \mathrm{mg}, 7 \%)$ was prepared from thiobarbituric acid (5.22 g , $36.2 \mathrm{mmol})$ and iodooctane $(6.30 \mathrm{~mL}, 36.2 \mathrm{mmol})$ in the same manner as described for 20. Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.21-1.38(8 \mathrm{H}, \mathrm{m}), 1.38-1.49$ $(2 \mathrm{H}, \mathrm{m}), 1.72(2 \mathrm{H}, \mathrm{tt}, J=7.3$ and 7.3 Hz$), 3.14(2 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 7.01(1 \mathrm{H}, \mathrm{s})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}(\mathrm{M}+$ H^{+}) 293.0646, found 293.0623.

2-(Butylthio)-4,6-dichloropyrimidine-5-carboxylic Acid (22). A 2.6 M solution of n-butyllithium ($4.0 \mathrm{~mL}, 10.4 \mathrm{mmol}$) in hexanes was added to a solution of diisopropylamine (1.50 mL , $10.6 \mathrm{mmol})$ in THF (10 mL) at $-10^{\circ} \mathrm{C}$ under Ar. After the solution was stirred for 30 min , a solution of $\mathbf{2 0}(1.59 \mathrm{~g}$, 6.70 mmol) in THF (10 mL) was added to the LDA solution at $-78^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 5 h , and CO_{2} gas was then introduced for 10 min . After the reaction was quenched by the addition of water $(10 \mathrm{~mL})$ and 6 N $\mathrm{HCl}(10 \mathrm{~mL})$, the mixture was extracted with ethyl acetate. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. The residue was recrystallized from MeOH to afford $22(1.40 \mathrm{~g}, 74 \%)$ as a pale yellow solid. $\mathrm{Mp}: 210-215^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 0.91(3 \mathrm{H}, \mathrm{t}$, $J=7.3 \mathrm{~Hz}), 1.40(2 \mathrm{H}, \mathrm{qt}, J=7.3$ and 7.3 Hz$), 1.63(2 \mathrm{H}, \mathrm{tt}, J=$ 7.3 and 7.3 Hz), $3.10(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right)$279.9840, found 279.9844. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 2.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(Butylthio)-4,6-dichloropyrimidine-5-carboxylic Acid (23). The title compound 23 ($420 \mathrm{mg}, 54 \%$) was prepared from 21 ($680 \mathrm{mg}, 2.32 \mathrm{mmol}$) in the same manner as described for 22. Pale yellow solid. Mp: 210-214 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 0.86(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.20-1.43(10 \mathrm{H}, \mathrm{m})$, $1.65(2 \mathrm{H}, \mathrm{tt}, J=7.3$ and 7.3 Hz$), 3.09(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right) 336.0466$, found 336.0446. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl 2-(Butylthio)-4,6-dichloropyrimidine-5-carboxylate (24). To a solution of $\mathbf{2 2}(1.21 \mathrm{~g}, 4.30 \mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ were added potassium carbonate ($595 \mathrm{mg}, 4.31 \mathrm{mmol}$) and iodomethane
$(0.30 \mathrm{~mL}, 4.82 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h . The reaction mixture was diluted with ethyl acetate, then washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography (hexane/AcOEt $=5: 1$) of the residue gave $24(1.00 \mathrm{~g}$, 66%) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.47(2 \mathrm{H}, \mathrm{qt}, J=7.3$ and 7.3 Hz$), 1.72(2 \mathrm{H}$, $\mathrm{tt}, J=7.3$ and 7.3 Hz$), 3.16(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.98(3 \mathrm{H}, \mathrm{s})$. HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right)$293.9997, found 293.9977.

Methyl 4,6-Dichloro-2-(octylthio)pyrimidine-5-carboxylate (25). The title compound 25 ($400 \mathrm{mg}, 86 \%$) was prepared from 23 ($445 \mathrm{mg}, 1.32 \mathrm{mmol}$) and iodomethane $(0.10 \mathrm{~mL}, 1.61 \mathrm{mmol})$ in the same manner as described for 24. Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.20-1.37(8 \mathrm{H}$, $\mathrm{m}), 1.37-1.49(2 \mathrm{H}, \mathrm{m}), 1.72(2 \mathrm{H}, \mathrm{tt}, J=7.3$ and 7.3 Hz$), 3.15$ $(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.98(3 \mathrm{H}, \mathrm{s})$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20^{-}}$ $\mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right) 350.0623$, found 350.0657 .

Methyl 4-(Benzylthio)-2-(butylthio)-6-chloropyrimidine-5carboxylate (26). To a solution of $\mathbf{2 4}(96.0 \mathrm{mg}, 0.325 \mathrm{mmol})$ in DMF (1 mL) were added potassium carbonate $(45.0 \mathrm{mg}, 0.326$ mmol) and phenyl methanethiol ($41.0 \mathrm{mg}, 0.330 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 5 h . The reaction mixture was diluted with ethyl acetate, then washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography (hexane/ $\mathrm{AcOEt}=5: 1$) of the residue gave $26(107 \mathrm{mg}, 86 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.45(2 \mathrm{H}$, $\mathrm{qt}, J=7.3$ and 7.3 Hz$), 1.71(2 \mathrm{H}, \mathrm{tt}, J=7.3$ and 7.3 Hz$), 3.13$ $(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{s}), 7.24-7.40(5 \mathrm{H}, \mathrm{m})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$383.0655, found 383.0696 .

Methyl 4-(Benzylthio)-6-chloro-2-(octylthio)pyrimidine-5-carboxylate (27). The title compound $27(110 \mathrm{mg}, 70 \%)$ was prepared from $25(126 \mathrm{mg}, 0.359 \mathrm{mmol})$ and phenyl methanethiol $(45.0 \mathrm{mg}, 0.362 \mathrm{mmol})$ in the same manner as described for 26. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$, $1.18-1.35(8 \mathrm{H}, \mathrm{m}), 1.35-1.45(2 \mathrm{H}, \mathrm{m}), 1.66-1.76(2 \mathrm{H}, \mathrm{m}), 3.12$ $(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.43(2 \mathrm{H}, \mathrm{s}), 7.21-7.40(5 \mathrm{H}, \mathrm{m})$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 438.1202$, found 438.1167.

4,6-Dichloropyrimidine-5-carboxylic Acid (29). Step 1. 4,6-Dichloropyrimidine-5-carboxaldehyde. To a mixture of phosphoryl oxychloride ($8.42 \mathrm{~mL}, 89.2 \mathrm{mmol}$) and DMF (2.76 mL , 35.7 mmol), 4,6-dihydroxypyrimidine ($2.00 \mathrm{~g}, 17.8 \mathrm{mmol}$) was added over 40 min and then stirred at $100^{\circ} \mathrm{C}$ for 5 h . The mixture was poured into ice-water and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The compound 29 Step $1(2.04 \mathrm{~g}$, 65%) was given as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.90(1 \mathrm{H}, \mathrm{s}), 10.46(1 \mathrm{H}, \mathrm{s})$.

Step 2. 4,6-Dichloropyrimidine-5-carboxylic acid (29). To a mixture of the compound of step $1(2.00 \mathrm{~g}, 11.3 \mathrm{mmol})$, 2-methyl-2-butene ($6.00 \mathrm{~mL}, 56.6 \mathrm{mmol}$), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(6.14 \mathrm{~g}$, $51.2 \mathrm{mmol}), t-\mathrm{BtOH}(80 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added $\mathrm{NaClO}_{2}(4.09 \mathrm{~g}, 45.2 \mathrm{mmol})$ and then stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . After being warmed at room temperature, the mixture was diluted with AcOEt , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The title compound $29(1.28 \mathrm{~g}, 59 \%)$ was given as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(1 \mathrm{H}, \mathrm{s})$.

Methyl 4,6-Dichloropyrimidine-5-carboxylate (30). To a solution of $29(386 \mathrm{mg}, 2.00 \mathrm{mmol})$ in DMF (2 mL) were added potassium carbonate ($277 \mathrm{mg}, 2.00 \mathrm{mmol}$) and iodomethane $(0.15 \mathrm{~mL}, 2.41 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h . The reaction mixture was diluted with ethyl acetate, then washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography (hexane/AcOEt =5:1) of the residue gave $\mathbf{3 0}(217 \mathrm{mg}$, $52 \%)$ as a pale yellow solid. $\mathrm{Mp}: 47-49^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.03(3 \mathrm{H}, \mathrm{s}), 8.84(1 \mathrm{H}, \mathrm{s})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$206.9728, found 206.9736. Anal. $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} 0.3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl 4-(Benzylthio)-6-chloropyrimidine-5-carboxylate (31). To a solution of methyl $\mathbf{3 0}(115 \mathrm{mg}, 0.556 \mathrm{mmol})$ in DMF (1 mL) were added potassium carbonate ($77.0 \mathrm{mg}, 0.557 \mathrm{mmol}$) and phenyl methanethiol ($70.0 \mathrm{mg}, 0.564 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . The reaction mixture was diluted with ethyl acetate, then washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography (hexane/AcOEt $=5: 1$) of the residue gave $31(147 \mathrm{mg}, 90 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.96(3 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}, \mathrm{s}), 7.24-7.35(3 \mathrm{H}$, m), $7.38(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 8.75(1 \mathrm{H}, \mathrm{s})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$295.0308, found 295.0297.

4-(Benzylamino)-6-(benzylthio)-2-(methylthio)pyrimidine-5-carboxylic Acid (9). Step 1. Methyl 4-(benzylamino)-6-(benzylthio)-2-(methylthio)pyrimidine-5-carboxylate. To a solution of $\mathbf{1 2}$ $(100 \mathrm{mg}, 0.309 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ were added potassium carbonate ($85.5 \mathrm{mg}, 0.619 \mathrm{mmol}$) and phenyl methanethiol $(42.5 \mathrm{mg}, 0.342 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . The reaction mixture was diluted with ethyl acetate, then washed with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography (hexane/AcOEt $=5: 1$) of the residue gave 9 Step 1 as a pale yellow solid ($126 \mathrm{mg}, 99 \%$). Mp: $91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.46(3 \mathrm{H}, \mathrm{s}), 3.84$ $(3 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s}), 4.74(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 7.20-7.37(8 \mathrm{H}, \mathrm{m})$, $7.39(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.90(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 412.1153$, found 412.1112. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylamino)-6-(benzylthio)-2-(methylthio)pyrimi-dine-5-carboxylic acid (9). To a solution of the compound of Step $1(108 \mathrm{mg}, 0.262 \mathrm{mmol})$ in THF-MeOH ($1.5 \mathrm{~mL} ; 1: 2 \mathrm{v} / \mathrm{v}$) was added $3 \mathrm{~N} \mathrm{KOH}(0.5 \mathrm{~mL})$ at room temperature, and the mixture was refluxed for 4 h . The resulting mixture was cooled to room temperature, and water and $2 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$ were then added. The precipitate was formed and collected by filtration, and dried in vacuo. 9 was given as a colorless solid (80.0 mg , 77%). Mp: $165-167^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 2.39$ $(3 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{s}), 4.68(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 7.20-7.42(10 \mathrm{H}, \mathrm{m})$, 8.98-9.10 ($1 \mathrm{H}, \mathrm{br}$), 13.65-14.05 (1H, br). HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$397.0919, found 397.0944. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{19}-\right.$ $\left.\mathrm{N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} 0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Anilino-6-(benzylthio)-2-(methylthio)pyrimidine-5-carboxylic Acid (32). Step 1. Methyl 4-anilino-6-(benzylthio)-2-(methylthio)-pyrimidine-5-carboxylate. The compound of Step $1(35.6 \mathrm{mg}$, 28%) was prepared from $12(100 \mathrm{mg}, 0.323 \mathrm{mmol})$ and phenyl methanethiol ($45.0 \mathrm{mg}, 0.362 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow solid. Mp: 102-103 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.50(3 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.39(2 \mathrm{H}, \mathrm{s})$, $7.12(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.22-7.37(5 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{d}, J=$ $7.3 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 10.70(1 \mathrm{H}, \mathrm{s}) . \operatorname{HRMS}\left(\mathrm{FAB}^{+}\right)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$398.0997, found 398.1002. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-Anilino-6-(benzylthio)-2-(methylthio)pyrimidine-5carboxylic acid (32). The title compound $\mathbf{3 2}(26.5 \mathrm{mg}, 92 \%)$ was prepared from the compound of Step $1(30.0 \mathrm{mg}, 75.5 \mu \mathrm{~mol})$ in the same manner as described for 9 . Colorless solid. Mp: $192-195{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 2.48(3 \mathrm{H}, \mathrm{s})$, $4.33(2 \mathrm{H}, \mathrm{s}), 7.09-7.16(1 \mathrm{H}, \mathrm{m}), 7.22-7.29(1 \mathrm{H}, \mathrm{m}), 7.29-7.45$ $(6 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{dd}, J=8.5$ and 1.2 Hz$), 10.74-10.85(1 \mathrm{H}$, br), 13.95-14.75 (1 H , br). HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}+1\right) 384.0840$, found 384.0851. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylthio)-2-(methylthio)-6-(2-phenethylamino)pyrimidine-5-carboxylic Acid (33). Step 1. Methyl 4-(benzylthio)-2-(methy-lthio)-6-(phenethylamino)pyrimidine-5-carboxylate. The compound of Step 1 ($38.7 \mathrm{mg}, 53 \%$) was prepared from $12(57.4 \mathrm{mg}$, $0.170 \mathrm{mmol})$ and phenyl methanethiol ($23.2 \mathrm{mg}, 0.359 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow solid. Mp:
$152-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.53(3 \mathrm{H}, \mathrm{s}), 2.92$ $(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.77(2 \mathrm{H}, \mathrm{dd}, J=7.3$ and 5.5 Hz$), 3.81(3 \mathrm{H}, \mathrm{s})$, $4.37(2 \mathrm{H}, \mathrm{s}), 7.20-7.35(8 \mathrm{H}, \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.51$ $(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 426.1310$, found 426.1327. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right.$ $\left.0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylthio)-2-(methylthio)-6-(2-phenethylamino)-pyrimidine-5-carboxylic acid (33). The title compound $\mathbf{3 3}(29.7 \mathrm{mg}$, 93%) was prepared from the compound of Step $1(33.0 \mathrm{mg}$, $77.5 \mu \mathrm{~mol}$) in the same manner as described for 9 . Colorless solid. Mp: 175-177 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 2.49$ $(3 \mathrm{H}, \mathrm{s}), 2.85(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.62-3.72(2 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{s})$, $7.18-7.42(10 \mathrm{H}, \mathrm{m}), 8.65-8.77(1 \mathrm{H}, \mathrm{br}), 13.50-14.05(1 \mathrm{H}, \mathrm{br})$. HRMS (FAB^{+}) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}+1\right) 412.1153$, found 412.1176. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylthio)-2-(methylthio)-6-(2-pyridylmethylamino)pyrimi-dine-5-carboxylic Acid (34). Step 1. Methyl 4-(benzylthio)-2-(methylthio)-6-(2-pyridylmethylamino)pyrimidine-5-carboxylate. The compound of Step $1(87.5 \mathrm{mg}, 85 \%)$ was prepared from $12(85.3 \mathrm{mg}, 0.250 \mathrm{mmol})$ and 2-pyridylmethylamine (30.0 $\mathrm{mg}, 0.277 \mathrm{mmol}$) in the same manner as described for 9 Step 1 . Pale yellow solid. mp: 107-109 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 4.38(2 \mathrm{H}, \mathrm{s}), 4.85(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz})$, $7.17-7.34(5 \mathrm{H}, \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{td}, J=$ 7.3 and 1.8 Hz$), 8.60(1 \mathrm{H}, \mathrm{dd}, J=3.1$ and 1.8 Hz$), 9.34(1 \mathrm{H}, \mathrm{t}$, $J=5.5 \mathrm{~Hz})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 413.1106, found 413.1129. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylthio)-2-(methylthio)-6-(2-pyridylmethyla-mino)pyrimidine-5-carboxylic Acid (34). The title compound $34(60.0 \mathrm{mg}, 82 \%)$ was prepared from the compound of Step 1 $(76.0 \mathrm{mg}, 0.184 \mathrm{mmol})$ in the same manner as described for 9 . Colorless solid. Mp: 192-194 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 2.36(3 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{s}), 4.76(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz})$, $7.20-7.35(5 \mathrm{H}, \mathrm{m}), 7.35-7.42(2 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{td}, J=7.3$ and $1.2 \mathrm{~Hz}), 8.52(1 \mathrm{H}, \mathrm{dd}, J=4.9$ and 1.8 Hz$), 9.27-9.42(1 \mathrm{H}, \mathrm{br})$, 13.50-14.10 ($1 \mathrm{H}, \mathrm{br}$). HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}+1\right) 399.0949$, found 399.0952. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}\right.$ $\left.0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylthio)-2-(methylthio)-6-(3-pyridylmethylamino)pyrimi-dine-5-carboxylic Acid (35). Step 1. Methyl 4-(benzylthio)-2-(methylthio)-6-(3-pyridylmethylamino)pyrimidine-5-carboxylate. The compound of Step $1(91.0 \mathrm{mg}, 74 \%)$ was prepared from $12(102 \mathrm{mg}, 0.299 \mathrm{mmol})$ and 3-pyridylmethylamine (34.0 $\mathrm{mg}, 0.314 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow solid. Mp: $121-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.44(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s}), 4.75(2 \mathrm{H}, \mathrm{d}$, $J=6.1 \mathrm{~Hz}), 7.21-7.28(2 \mathrm{H}, \mathrm{m}), 7.31(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.39$ $(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.52(1 \mathrm{H}, \mathrm{d}, J=$ $3.1 \mathrm{~Hz}), 8.59(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.99(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz})$. HRMS (FAB^{+}) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$413.1106, found 413.1149. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylthio)-2-(methylthio)-6-(3-pyridylmethyla-mino)pyrimidine-5-carboxylic Acid (35). The title compound 35 ($25.0 \mathrm{mg}, 35 \%$) was prepared from the compound of Step 1 (73.0 $\mathrm{mg}, 0.177 \mathrm{mmol}$) in the same manner as described for 9 . Colorless solid. Mp: 197-200 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $2.38(3 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{s}), 4.69(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 7.20-7.40$ $(6 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{dt}, J=7.9$ and 1.8 Hz$), 8.44(1 \mathrm{H}, \mathrm{dd}, J=4.9$ and 1.8 Hz$), 8.54(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 9.09-9.20(1 \mathrm{H}, \mathrm{br})$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$398.0871, found 398.0841. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} 0.3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylthio)-2-(methylthio)-6-(4-pyridylmethylamino)pyrimi-dine-5-carboxylic Acid (36). Step 1. Methyl 4-(benzylthio)-2-(methylthio)-6-(4-pyridylmethylamino)pyrimidine-5-carboxylate. The compound of Step $1(81.3 \mathrm{mg}, 79 \%)$ was prepared from $\mathbf{1 2}$ $(85.3 \mathrm{mg}, 0.250 \mathrm{mmol})$ and 4-pyridylmethylamine $(30.0 \mathrm{mg}$, 0.277 mmol) in the same manner as described for 9 Step 1. Pale yellow solid. Mp: $111-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $2.37(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s}), 4.75(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz})$, $7.18-7.27(4 \mathrm{H}, \mathrm{m}), 7.31(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 7.40(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz})$,
8.52-8.57 ($2 \mathrm{H}, \mathrm{m}$), $9.05(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz})$. HRMS $\left(\mathrm{FAB}^{+}\right)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$413.1106, found 413.1131. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylthio)-2-(methylthio)-6-(4-pyridylmethyla-mino)pyrimidine-5-carboxylic acid (36). The title compound $36(62.5 \mathrm{mg}, 92 \%)$ was prepared from the compound of Step 1 $(70.0 \mathrm{mg}, 0.170 \mathrm{mmol})$ in the same manner as described for 9 . Colorless solid. Mp: 202-203 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 2.30(3 \mathrm{H}, \mathrm{s}), 4.26(2 \mathrm{H}, \mathrm{s}), 4.69(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz})$, $7.20-7.32(5 \mathrm{H}, \mathrm{m}), 7.35-7.40(2 \mathrm{H}, \mathrm{m}), 8.47(2 \mathrm{H}, \mathrm{dd}, J=4.3$ and 1.8 Hz), $9.15-9.32(1 \mathrm{H}, \mathrm{br})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}+1\right) 399.0949$, found 399.0941. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} 0.6 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylthio)-6-(methylamino)-2-(methylthio)pyrimidine-5carboxylic Acid (37). Step 1. Methyl 4-(benzylthio)-6-(methyl-amino)-2-(methylthio)pyrimidine-5-carboxylate. The compound of Step $1(83.2 \mathrm{mg}, 83 \%)$ was prepared from methyl $12(102 \mathrm{mg}$, $0.300 \mathrm{mmol})$ and methylamine $(0.2 \mathrm{~mL}, 2 \mathrm{M}$ solution in THF, $0.4 \mathrm{mmol})$ in the same manner as described for 9 Step 1. Pale yellow solid. Mp: $151-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.53(3 \mathrm{H}, \mathrm{s}), 3.05(3 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.38(2 \mathrm{H}, \mathrm{s})$, $7.22-7.26(1 \mathrm{H}, \mathrm{m}), 7.31(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.39(2 \mathrm{H}, \mathrm{d}, J=7.3$ $\mathrm{Hz}), 8.42-8.50\left(1 \mathrm{H}\right.$, br). HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}\right)$335.0762, found 335.0739. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylthio)-6-(methylamino)-2-(methylthio)pyri-midine-5-carboxylic acid (37). The title compound $37(61.5 \mathrm{mg}$, 91%) was prepared from the compound of Step $1(70.7 \mathrm{mg}$, 0.211 mmol) in the same manner as described for 9 . Colorless solid. Mp: $169-171{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 2.48$ $(3 \mathrm{H}, \mathrm{s}), 2.93(3 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}), 4.29(2 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 7.30(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.50(1 \mathrm{H}$, brs), 13.72 (1 H, brs). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$ 321.0606, found 321.0579. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylthio)-2-(methylthio)-4-(propylamino)pyrimidine-5carboxylic Acid (38). Step 1. Methyl 4-(benzylthio)-2-(methyl-thio)-4-(propylamino)pyrimidine-5-carboxylate. The compound of Step $1(82.8 \mathrm{mg}, 76 \%)$ was prepared from $12(102 \mathrm{mg}, 0.300 \mathrm{mmol})$ and propylamine ($20.0 \mathrm{mg}, 0.338 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow solid. Mp: 94-96 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.58-170$ $(3 \mathrm{H}, \mathrm{m}), 2.50(3 \mathrm{H}, \mathrm{s}), 3.45-3.53(2 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s})$, $7.21-7.27(1 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.39(2 \mathrm{H}, \mathrm{d}, J=$ $7.3 \mathrm{~Hz}), 8.55-8.65\left(1 \mathrm{H}\right.$, br). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}\right)$363.1075, found 363.1060. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylthio)-2-(methylthio)-4-(propylamino)pyrimi-dine-5-carboxylic acid (38). The title compound $38(60.0 \mathrm{mg}$, 92%) was prepared from the compound of Step $1(68.0 \mathrm{mg}$, 0.187 mmol) in the same manner as described for 9 . Colorless solid. Mp: $159-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 0.89$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.50-1.61(2 \mathrm{H}, \mathrm{m}), 2.47(3 \mathrm{H}, \mathrm{s}), 3.37-3.45$ $(2 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{t}, J=$ $7.3 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.60-8.68(1 \mathrm{H}, \mathrm{br}), 13.78(1 \mathrm{H}$, brs). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 349.0919$, found 349.0922. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylthio)-6-(cyclopropylamino)-2-(methylthio)pyrimidine-5-carboxylic Acid (39). Step 1. Methyl 4-(benzylthio)-6-(cyclo-propyl)-2-(methylthio)pyrimidine-5-carboxylate. The compound of Step $1(64.8 \mathrm{mg}, 60 \%)$ was prepared from 12 (102 $\mathrm{mg}, 0.299 \mathrm{mmol})$ and cyclopropylamine $(19.0 \mathrm{mg}, 0.333 \mathrm{mmol})$ in the same manner as described for 9 Step 1. Pale yellow solid. $\mathrm{Mp}: 107-110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.52-0.58$ $(2 \mathrm{H}, \mathrm{m}), 0.79-0.85(2 \mathrm{H}, \mathrm{m}), 2.54(3 \mathrm{H}, \mathrm{s}), 2.92-3.00(1 \mathrm{H}, \mathrm{m})$, $3.84(3 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{s}), 7.20-7.27(1 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 7.39(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.51(1 \mathrm{H}$, brs). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$361.0919, found 361.0879. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylthio)-6-(cyclopropylamino)-2-(methylthio)-pyrimidine-5-carboxylic acid (39). The title compound 39 (52.0 mg , 95%) was prepared from the compound of Step $1(57.0 \mathrm{mg}, 0.158$ mmol) in the same manner as described for $\mathbf{9}$. Colorless solid. Mp :
$177-180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 0.50-0.56$ $(2 \mathrm{H}, \mathrm{m}), 0.72-0.80(2 \mathrm{H}, \mathrm{m}), 2.87-2.96(1 \mathrm{H}, \mathrm{m}), 4.30(2 \mathrm{H}, \mathrm{s})$, $7.23(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{d}$, $J=7.3 \mathrm{~Hz}), 8.50-8.60(1 \mathrm{H}, \mathrm{br}), 13.65-14.00(1 \mathrm{H}, \mathrm{br})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}+1\right) 348.0840$, found 348.0850. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylthio)-6-(cyclohexylamino)-2-(methylthio)pyrimidine-5-carboxylic Acid (40). Step 1. Methyl 4-(benzylthio)-6-(cyclo-hexylamino)-2-(methylthio)pyrimidine-5-carboxylate. The compound of Step 1 ($110 \mathrm{mg}, 43 \%$) was prepared from 12 (208 mg , 0.610 mmol) and cyclohexylamine ($80 \mu \mathrm{~L}, 0.615 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow solid. Mp: $76-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92-1.04(2 \mathrm{H}, \mathrm{m})$, $1.14-1.30(4 \mathrm{H}, \mathrm{m}), 1.62-1.82(4 \mathrm{H}, \mathrm{m}), 2.50(3 \mathrm{H}, \mathrm{s}), 3.37(2 \mathrm{H}, \mathrm{t}$, $J=6.1 \mathrm{~Hz}), 3.85(2 \mathrm{H}, \mathrm{s}), 4.36(2 \mathrm{H}, \mathrm{s}), 7.21-7.27(1 \mathrm{H}, \mathrm{m}), 7.31$ $(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.66(1 \mathrm{H}, \mathrm{t}, J=6.1$ Hz). HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 417.1545$, found 417.1592. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylthio)-6-(cyclohexylamino)-2-(methylthio)-pyrimidine-5-carboxylic acid (40). The title compound 40 $(80.1 \mathrm{mg}, 93 \%)$ was prepared from the compound of Step 1 $(89.3 \mathrm{mg}, 0.214 \mathrm{mmol})$ in the same manner as described for 9 . Colorless solid. Mp: $168-170{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 0.87-1.00(2 \mathrm{H}, \mathrm{m}), 1.05-1.25(3 \mathrm{H}, \mathrm{m}), 1.48-1.72(6 \mathrm{H}, \mathrm{m})$, $2.46(3 \mathrm{H}, \mathrm{s}), 2.40-2.55(2 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{s}), 7.20-7.26(1 \mathrm{H}, \mathrm{m})$, $7.26-7.32(2 \mathrm{H}, \mathrm{m}), 7.32-7.42(2 \mathrm{H}, \mathrm{m}), 8.70(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz})$, 13.50-14.10 ($1 \mathrm{H}, \mathrm{br}$). HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}+1\right) 404.1466$, found 404.1484. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right)$ C, H, N.

4-(Benzylamino)-6-(benzylthio)-2-(butylthio)pyrimidine-5-carboxylic Acid (41). Step 1. Methyl 4-(benzylamino)-6-(benzylthio)-2-(butylthio)pyrimidine-5-carboxylate. The compound of Step $1(95.0 \mathrm{mg}, 98 \%)$ was prepared from $26(82.0 \mathrm{mg}, 0.214 \mathrm{mmol})$ and benzylamine ($27.5 \mathrm{mg}, 0.257 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow solid. Mp: 87-89 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.32-1.44$ $(2 \mathrm{H}, \mathrm{m}), 1.60-1.70(2 \mathrm{H}, \mathrm{m}), 3.04(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.84(3 \mathrm{H}$, s), $4.36(2 \mathrm{H}, \mathrm{s}), 4.74(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 7.20-7.35(8 \mathrm{H}, \mathrm{m}), 7.39$ $(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 8.89(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$453.1545, found 453.1573. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} 0.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylamino)-6-(benzylthio)-2-(butylthio)pyrimi-dine-5-carboxylic acid (41). The title compound $41(55.0 \mathrm{mg}$, 74%) was prepared from the compound of Step $1(77.0 \mathrm{mg}$, 0.170 mmol) in the same manner as described for 9 . Colorless solid. Mp: 156-158 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 0.80$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.28(2 \mathrm{H}, \mathrm{qd}, J=7.3$ and 7.3 Hz$), 1.53(2 \mathrm{H}$, $\mathrm{tt}, J=7.3$ and 7.3 Hz$), 2.96(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 4.27(2 \mathrm{H}, \mathrm{s}), 4.69$ $(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 7.20-7.40(10 \mathrm{H}, \mathrm{m}), 13.40-14.20(1 \mathrm{H}, \mathrm{br})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}+1\right)$ 440.1466, found 440.1483. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylamino)-6-(benzylthio)-2-(octylthio)pyrimidine-5-carboxylic Acid (42). Step 1. Methyl 4-(benzylamino)-6-(benzy-1thio)-2-(octylthio)pyrimidine-5-carboxylate. The compound of Step $1(112 \mathrm{mg}, 88 \%)$ was prepared from $27(110 \mathrm{mg}, 0.251$ mmol) and benzylamine ($32.0 \mathrm{mg}, 0.299 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow solid. Mp: 65$67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz})$, $1.18-1.40(10 \mathrm{H}, \mathrm{m}), 1.61-1.72(2 \mathrm{H}, \mathrm{m}), 3.03(2 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 3.84(3 \mathrm{H}, \mathrm{s}), 4.36(2 \mathrm{H}, \mathrm{s}), 4.74(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz})$, $7.21-7.41(10 \mathrm{H}, \mathrm{m}), 8.89(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$509.2171, found 509.2138. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylamino)-6-(benzylthio)-2-(octylthio)pyrimi-dine-5-carboxylic acid (42). The title compound $42(85.3 \mathrm{mg}$, 95%) was prepared from the compound of Step $1(93.0 \mathrm{mg}$, 0.182 mmol) in the same manner as described for 9 . Colorless solid. Mp: $145-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 0.83$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.10-1.30(10 \mathrm{H}, \mathrm{m}), 1.54(2 \mathrm{H}, \mathrm{tt}, J=7.3$ and 7.3 Hz$), 2.96(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.20-7.40(10 \mathrm{H}, \mathrm{m})$,
8.95-9.10 (1H, br), 13.50-14.20 (1H, br). HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}+1\right) 496.2092$, found 496.2107. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylamino)-6-(benzylthio)pyrimidine-5-carboxylic Acid (43). Step 1. Methyl 4-(benzylamino)-6-(benzylthio)pyrimidine-5-carboxylate. The compound of Step 1 ($90.5 \mathrm{mg}, 67 \%$) was prepared from $31(115 \mathrm{mg}, 0.390 \mathrm{mmol})$ and benzylamine (50.0 $\mathrm{mg}, 0.467 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow solid. Mp: 84-87 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.88(3 \mathrm{H}, \mathrm{s}), 4.41(2 \mathrm{H}, \mathrm{s}), 4.76(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 7.21-7.36$ $(8 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 8.42(1 \mathrm{H}, \mathrm{s}), 8.83(1 \mathrm{H}, \mathrm{t}, J=$ 5.5 Hz). HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right) 365.1198$, found 365.1191. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylamino)-6-(benzylthio)pyrimidine-5-carboxylic acid (43). The title compound $43(63.0 \mathrm{mg}, 91 \%)$ was prepared from the compound of Step $1(72.0 \mathrm{mg}, 0.197 \mathrm{mmol})$ in the same manner as described for 9 . Colorless solid. Mp: $223-226^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 4.32(2 \mathrm{H}, \mathrm{s})$, $4.70(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 7.20-7.40(10 \mathrm{H}, \mathrm{m}), 8.39(1 \mathrm{H}, \mathrm{s}), 8.89$ $(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}), 13.70-14.40(1 \mathrm{H}, \mathrm{br})$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+1\right) 352.1120$, found 352.1156. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylamino)-6-(benzyloxy)-2-(methylthio)pyrimidine-5carboxylic Acid (44). Step 1. Methyl 4-(benzylamino)-6-(benzy-loxy)-2-(methylthio)pyrimidine-5-carboxylate. The compound of Step 1 ($165 \mathrm{mg}, 90 \%$) was prepared from $13(150 \mathrm{mg}$, 0.463 mmol) and benzylalcohol ($100 \mathrm{mg}, 0.925 \mathrm{mmol}$) in the same manner as described for 9 Step 1. Pale yellow oil. ${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.46(3 \mathrm{H}, \mathrm{s}), 4.72(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 5.34$ $(2 \mathrm{H}, \mathrm{s}), 7.25-7.45(10 \mathrm{H}, \mathrm{m}), 8.72(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$395.1304, found 395.1306.

Step 2. 4-(Benzylamino)-6-(benzyloxy)-2-(methylthio)pyrimi-dine-5-carboxylic acid (44). The title compound $44(61.8 \mathrm{mg}$, 80%) was prepared from the compound of Step $1(80.0 \mathrm{mg}$, 0.202 mmol) in the same manner as described for 9 . Colorless solid. Mp: 108-112 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 2.32$ $(3 \mathrm{H}, \mathrm{s}), 4.62(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 5.36(2 \mathrm{H}, \mathrm{s}), 7.13-7.33(8 \mathrm{H}$, $\mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 9.20(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz})$, $11.50-13.50\left(1 \mathrm{H}\right.$, br). HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ $\left(\mathrm{M}^{+}+1\right)$ 382.1225, found 382.1191. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right.$ $\left.0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylamino)-6-(benzylthio)-2-(butylamino)pyrimidine-5carboxylic Acid (45). Step 1. Methyl 4-(benzylamino)-6-(benzy-lthio)-2-(butylamino)pyrimidine-5-carboxylate. The compound of Step $1(58.6 \mathrm{mg}, 94 \%)$ was prepared from $15(50.0 \mathrm{mg}, 0.143$ $\mathrm{mmol})$ and phenyl methanethiol $(21.5 \mathrm{mg}, 0.173 \mathrm{mmol})$ in the same manner as described for 9 Step 1. Pale yellow solid. Mp: $109-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \delta 0.90(3 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 1.28-1.40(2 \mathrm{H}, \mathrm{m}), 1.46-1.58(2 \mathrm{H}, \mathrm{m}), 3.31-3.47(2 \mathrm{H}, \mathrm{m})$, $3.80(3 \mathrm{H}, \mathrm{s}), 4.24-4.42(2 \mathrm{H}, \mathrm{br}), 4.61-4.75(2 \mathrm{H}, \mathrm{br}), 5.02-5.13$ $(1 \mathrm{H}, \mathrm{br}), 7.20-7.42(10 \mathrm{H}, \mathrm{m}), 8.73-8.98(1 \mathrm{H}, \mathrm{br})$.

Step 2. 4-(Benzylamino)-6-(benzylthio)-2-(butylamino)pyri-midine-5-carboxylic acid (45). The title compound 45 (38.0 mg , 83%) was prepared from the compound of Step 1 (47.6 mg , 0.109 mmol) in the same manner as described for 9 . Colorless solid. Mp: $145-147{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 0.83$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.18-1.30(2 \mathrm{H}, \mathrm{m}), 1.33-1.50(2 \mathrm{H}, \mathrm{m})$, $3.15-3.30(3 \mathrm{H}, \mathrm{m}), 4.22$ and $4.30(2 \mathrm{H}$, each s$), 4.63(2 \mathrm{H}, \mathrm{d}, J=$ $6.1 \mathrm{~Hz}), 7.18-7.42(11 \mathrm{H}, \mathrm{m}), 8.81$ and $8.94(1 \mathrm{H}$, each $\mathrm{t}, J=6.1$ $\mathrm{Hz}), \quad 12.70-13.10\left(1 \mathrm{H}\right.$, br). HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+1\right) 423.1855$, found 423.1880. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylamino)-6-(benzylthio)-2-(heptylamino)pyrimidine-5carboxylic Acid (46). To a solution of $\mathbf{1 6}(68.0 \mathrm{mg}, 0.174 \mathrm{mmol})$ in DMF $(0.5 \mathrm{~mL})$ were added potassium carbonate $(72.1 \mathrm{mg}$, $0.522 \mathrm{mmol})$ and phenyl methanethiol ($43.5 \mathrm{mg}, 0.350 \mathrm{mmol}$) at room temperature, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . To the resulting mixture was added $2 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$ under ice cooling. The precipitate was formed and collected by filtration, and then dried in vacuo. The title compound 46 ($48.7 \mathrm{mg}, 60 \%$)
was given as a colorless solid. Mp: $141-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 0.75-0.90(3 \mathrm{H}, \mathrm{m}), 1.12-1.32(9 \mathrm{H}, \mathrm{m})$, $1.32-1.52(2 \mathrm{H}, \mathrm{m}), 3.12-3.23(1 \mathrm{H}, \mathrm{m}), 4.22$ and $4.29(2 \mathrm{H}$, each s$)$, $4.63(2 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 7.16-7.43(11 \mathrm{H}, \mathrm{m}), 8.80-9.00(1 \mathrm{H}, \mathrm{br})$, 12.70-13.10 (1H, br). HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ $\left(\mathrm{M}^{+}+1\right) 465.2324$, found 465.2351. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} 0.57-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylamino)-6-(benzylthio)-2-(N-butyl- N-methylamino)-pyrimidine-5-carboxylic Acid (47). The title compound $47(19.0 \mathrm{mg}$, 39%) was prepared from $17(40.4 \mathrm{mg}, 0.111 \mathrm{mmol})$ and phenyl methanethiol ($28.0 \mathrm{mg}, 0.225 \mathrm{mmol}$) in the same manner as described for 46. Colorless solid. $\mathrm{Mp}: 140-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 0.74-0.86(3 \mathrm{H}, \mathrm{m}), 1.08-1.22(2 \mathrm{H}, \mathrm{m})$, $1.30-1.52(2 \mathrm{H}, \mathrm{m}), 2.96-3.12(3 \mathrm{H}, \mathrm{m}), 3.40-3.60(2 \mathrm{H}, \mathrm{m}), 4.26$ $(2 \mathrm{H}, \mathrm{s}), 4.63(2 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 7.17-7.41(10 \mathrm{H}, \mathrm{m}), 8.85-9.00$ $(1 \mathrm{H}, \mathrm{br})$, $12.85-13.10\left(1 \mathrm{H}\right.$, br). HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+1\right) 437.2011$, found 437.1968. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{28}{ }^{-}\right.$ $\left.\mathrm{N}_{4} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylamino)-6-(benzylthio)-2-(dibutylamino)pyrimidine-5-carboxylic Acid (48). The title compound 48 ($18.0 \mathrm{mg}, 69 \%$) was prepared from $18(22.0 \mathrm{mg}, 54.3 \mu \mathrm{~mol})$ and phenyl methanethiol ($13.5 \mathrm{mg}, 0.109 \mathrm{mmol}$) in the same manner as described for 46. Colorless solid. Mp: 138-139 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}\right) \delta 0.70-0.85(6 \mathrm{H}, \mathrm{m}), 1.08-1.23(4 \mathrm{H}, \mathrm{m}), 1.30-1.55$ $(4 \mathrm{H}, \mathrm{m}), 3.23-3.54(14 \mathrm{H}, \mathrm{m}), 4.27(2 \mathrm{H}, \mathrm{s}), 4.64(2 \mathrm{H}, \mathrm{t}, J=4.9$ $\mathrm{Hz}), 7.16-7.40(10 \mathrm{H}, \mathrm{m}), 8.85-9.00(1 \mathrm{H}, \mathrm{br}), 12.80-13.10(1 \mathrm{H}$, br). HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+1\right) 479.2481$, found 479.2491. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} 0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(Benzylamino)-2-(methylthio)-6-(2-thienyl)pyrimidine-5-carboxylic Acid (49). Step 1. Methyl 4-(benzylamino)-2-(methy-lthio)-6-(2-thienyl)pyrimidine-5-carboxylate. To a mixture of $13(97.2 \mathrm{mg}, 0.300 \mathrm{mmol})$ and 2-thienylboronic acid (57.6 mg , $0.450 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ and 1,4-dioxane (2 mL) were added $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(70.0 \mathrm{mg}, 60.6 \mu \mathrm{~mol})$, and the mixture was stirred under reflux for 2 h . The reaction mixture was cooled to room temperature and diluted with ethyl acetate. It was then washed with $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography (hexane $/ \mathrm{AcOEt}=5: 1$) of the residue gave 49 Step 1 $(61.0 \mathrm{mg}, 55 \%)$ as a pale yellow solid. $\mathrm{Mp}: 114-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.52(3 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 4.75(2 \mathrm{H}$, $\mathrm{d}, J=5.5 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=3.7$ and 1.2 Hz$), 7.25-7.37$ $(6 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and 1.2 Hz$), 7.80(1 \mathrm{H}, \mathrm{t}, J=$ 5.5 Hz). HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$371.0762, found 371.0760. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Step 2. 4-(Benzylamino)-2-(methylthio)-6-(2-thienyl)pyrimi-dine-5-carboxylic acid (49). The title compound $49(38.0 \mathrm{mg}$, 79%) was prepared from the compound of Step $1(50.0 \mathrm{mg}$, 0.135 mmol) in the same manner as described for 9 . Colorless solid. Mp: 142-144 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 2.40$ $(3 \mathrm{H}, \mathrm{s}), 4.64(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=5.5$ and $4.3 \mathrm{~Hz}), 7.20-7.27(1 \mathrm{H}, \mathrm{m}), 7.32(4 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 7.48(1 \mathrm{H}$, $\mathrm{dd}, J=3.7$ and 1.2 Hz$), 7.75(1 \mathrm{H}, \mathrm{dd}, J=4.9$ and 1.2 Hz$), 8.08$ $(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 13.55(1 \mathrm{H}, \mathrm{s})$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$357.0606, found 357.0634. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} 0.3 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4,6-Bis(benzylthio)-2-(methylthio)pyrimidine-5-carboxylic Acid (50). To a solution of $\mathbf{1 0}(120 \mathrm{mg}, 0.502 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ were added potassium carbonate $(138 \mathrm{mg}, 0.999 \mathrm{mmol})$ and phenyl methanethiol $(124 \mathrm{mg}, 1.00 \mathrm{mmol})$ at room temperature, and the mixture was stirred at room temperature for 4 h . To the resulting mixture was added $2 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$ under ice cooling. The precipitate was formed and collected by filtration, and dried in vacuo. The title compound $50(180 \mathrm{mg}, 86 \%)$ was given as a colorless solid. Mp: $187-189{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 2.55(3 \mathrm{H}, \mathrm{s}), 4.38(4 \mathrm{H}, \mathrm{s}), 7.22-7.42(10 \mathrm{H}, \mathrm{m}), 14.00-14.25$ $\left(1 \mathrm{H}\right.$, br). HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{3}\left(\mathrm{M}^{+}+1\right)$ 415.0609, found 415.0578. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

PPAR $\boldsymbol{\gamma}$ Transactivation Assay. Chinese hamster ovary K1 (CHO-K 1) cells were seeded at 5×10^{4} cells/well in 24 -well plates
and cultured in Ham's F12 medium containing 10% fetal calf serum for 24 h at $37{ }^{\circ} \mathrm{C}$. Cells were cotransfected for 2 h with 40 ng of GAL4/human PPAR LBD, 400 ng of pFR-Luc, and 5 ng of $\mathrm{pRL}-\mathrm{TK}$ per well using lipofectamine (Gibco BRL, Grand Island, NY). Transfected cells were treated with various concentrations of test compounds at $37{ }^{\circ} \mathrm{C}$ for 20 h . Cells were washed with phosphate-buffered saline and dissolved in passive lysis buffer (Promega, Madison, WI). Luciferase activity was determined with a microplate luminescence reader, LUCY2 (Authors, Salzburg, Austria). The EC_{50} values of tested compounds were derived from the curve fitting using the Prism program (GraphPad Software, San Diego, CA). The standard reference full agonist is rosiglitazone $\left(\mathrm{EC}_{50}=0.1 \mu \mathrm{M}, 100 \%\right.$ maximum activation at $10 \mu \mathrm{M})$. All results were produced in triplicate, and mean values are reported.

3T3-L1 Preadipocyte Differentiation Study. Confluent 3T3L1 preadipocytes were treated with complete medium containing $1 \mu \mathrm{M}$ dexamethasone, $1 \mu \mathrm{M}$ IBMX, and $2 \mu \mathrm{M}$ insulin (DEX/ MIX medium). After 2 days, the DEX/MIX medium was removed, and cells were washed three times with medium and then treated with ligands at $37^{\circ} \mathrm{C}$ for 48 h . The cells were stained by Oil-red O using adipogenesis assay kit (Hokudo).

In Vivo Study. Male $d b / d b$ mice (7-8 weeks old) and lean mice were orally dosed once daily with test compounds and vehicle (0.25% methylcellulose) by oral gavage for 7 days. Mice (seven per group) received a once daily oral dosing of test compounds with vehicle (0.25% methylcellulose). Plasma glucose levels were measured before dosing on day 7. Each data point represents the mean value $(\pm \mathrm{SD})$ of five individual mice.

Structure Determination. Crystal was soaked for 2 weeks in reservoir solution, which was prepared by the addition of $50 \mu \mathrm{~L}$ of compound solution ($5.6 \mathrm{mg} / 1 \mathrm{~mL} \mathrm{EtOH}$) to 0.95 M sodium citrate and 100 mM HEPES buffer (pH 7.5). The crystals were cryoprotected in glycerol and flash frozen in a cryo-stream. X-ray data were collected using a Rikagaku RU-H2R X-ray generator and a Rikagaku RAXIS-V detector. The data were scaled and processed with the programs DPS-Mosflm and SCALA. ${ }^{40,41}$

The structure was determined by the molecular replacement method using the model structure (PDBID: 1PRG). ${ }^{42}$ Refinement was carried out using the program CNX. ${ }^{43}$ Model building and validation took place using the programs TOM-FLODO and PROCHECK. ${ }^{44,45}$ A summary of the crystallographic statistics is shown in the Supporting Information.

Acknowledgment. The authors thank Dr. K. Hirai, Dr. T. Ishizaki, and Dr. K. Iwase for their valuable suggestions and encouragement. The authors also thank Mr. M. Suzuki and Mr. N. Kobayashi for the biological experiments.

Supporting Information Available: Experimental details of compounds S1-S10; elemental analysis; summary of crystallographic statistics. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Milions, H. J.; Elisaf, M. S.; Mikhailidis, D. P. Treatment of dyslipidaemias in patients with established vascular disease: a revival of the fibrates. Curr. Med. Res. Opin. 2000, 16, 21-32.
(2) Schoonjans, K.; Staels, B.; Auwerx, J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibtrates and fatty acid on gene expression. J. Lipid. Res. 1996, 37, 907-925.
(3) Staels, B.; Auwerx, J. Role of PPAR in the pharmacological regulation of lipoprotein metabolism by fibrates and thiazolidinediones. Curr. Pharm. Des. 1997, 3, 1-14.
(4) Murakami, K.; Tobe, K.; Ide, T.; Ohashi, M.; Akunuma, Y.; Yazaki, Y.; Kadowaki, T. A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR- α) and PPAR-gamma: effect of PPAR-alpha activation
on abnormal lipid metabolism in liver of Zucker fatty rats. Diabetes 1998, 47, 1841-1847.
(5) Momose, Y.; Meguro, K.; Ikeda, H.; Hatanaka, C.; Oi, S.; Sodha, T. Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem. Pharm. Bull. 1991, 39, 1440-1445.
(6) Cantello, B. C.; Cawthorne, M. A.; Haigh, D.; Hindley, R. M.; Smith, S. A.; Thurlby, P. [[ω-(Heterocycliylamino)alkoxy]benzyl]-2,4-thiazolidinesdiones as potent antidiabetic agents. J. Med. Chem. 1994, 37, 3977-3985.
(7) Hamefeld, M.; Belcher, G. Safety profile of pioglitazone. Int. J. Clin. Pract. 2001, 27-31.
(8) Sorbera, L. A.; Rabbasseda, X.; Castaner, J. Rosiglitazone malonate (BRL-49653C; Avantia): antidiabetic; insulin sensitizer. Drugs Future 1998, 23, 977-985.
(9) Berger, J. P.; Petro, A. E.; MacNaul, K. L.; Kelly, L. J.; Zhang, B. B.; Richards, K.; Elbrecht, A.; Johnson, B. A.; Zhou, G.; Doebber, T. W.; Biswas, C.; Parikh, M.; Sharma, N.; Tanen, M. R.; Thompson, G. M.; Ventre, J.; Adams, A. D.; Mosely, R.; Surwit, R. S.; Moller, D. E. Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator. Mol. Endocrinol. 2003, 17, 662-676.
(10) Acton, J, J.; Black, R. M.; Jones, A. B.; Moller, D. E.; Colwell, L.; Doebber, T. W.; MacNaul, K. L.; Berger, J.; Wood, H. B. Benzoyl 2-methyl indoles as selective PPAR γ modulators. Bioorg. Med. Chem. Lett. 2005, 15, 357-362.
(11) Berger, J. P.; Akiyama, T. E.; Meinke, P. T. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol. Sci. 2005, 26, 244251.
(12) Dropinski, J. F.; Akiyama, T.; Einstein, M.; Habulihaz, B.; Doebber, T.; Berger, J. P.; Meinke, P. T.; Shi, G. Q. Synthesis and biological activities of novel aryl indole-2-carboxylic acid analogues as PPAR γ partial agonists. Bioorg. Med. Chem. Lett. 2005, 15, 50355038.
(13) Cock, T. A.; Houten, S. M.; Auwerx, J. Peroxisome proliferatoractivated receptor γ : too much of a good thing cause harm. $E M B O$ J. 2004, 5, 142-147.
(14) Larsen, P. J.; Kykkegaard, K.; Larsen, L. K.; Fleckner, J.; Sauerberg, P.; Wassermann, K.; Wulff, E. M. Dissosiation of antihyperglycemic and adverse effects of partial peroxisome proliferatoractivated receptor (PPAR γ) agonist balaglitazone. Eur. J. Phermacol. 2008, 596, 173-179.
(15) Minoura, H.; Takeshita, S.; Ita, M.; Hirosumi, J.; Mabuchi, M.; Kawamura, I.; Nakajima, S.; Nakayama, O.; Kayakiri, H.; Oku, T.; Ohkubo-Suzuki, A.; Fukagawa, M.; Kojo, H.; Hanioka, K.; Yamasaki, N.; Imoto, T.; Kobayashi, Y.; Mutoh, S. Pharmacological characteristics of a novel nonthiazolidinedione insulin sensitizer, FK-614. Eur. J. Pharmacol. 2004, 494, 273-281.
(16) Acton, J. J., III; Akiyama, T. E.; Chang, C. H.; Colwell, L.; Debenham, S.; Doebber, T.; Einstein, M.; Liu, K.; McCann, M. E.; Moller, D. E.; Muise, E. S.; Tan, Y.; Thompson, J. R.; Wong, K. K.; Wu, M.; Xu, L.; Meinke, P. T.; Berger, J. P.; Wood, H. B. Discovery of $(2 R)-2-(3-\{3-[(4-m e t h o x y p h e n y l)$ carbonyl]-2-methyl-6-(trifluoromethoxy)-1 H-indol-1-yl $\}$ phenoxy)butanoic acid (MK-0533): a novel selective peroxisome proliferator-activated receptor γ modulator for the treatment of type 2 diabetes mellitus with a reduced potential to increase plasma and extracellular fluid volume. J. Med. Chem. 2009, 52 (13), 3846-3854.
(17) Gregoire, F. M.; Zhang, F.; Clarke, H. J.; Gustafson, T. A.; Sears, D. D.; Favelyukis, S.; Lenhard, J.; Rentzeperis, D.; Clemens, L. E.; Mu, Y.; Lavan, B. E. MBX-102/JNJ39659100, a novel peroxisome proliferator-activated receptor-ligand with weak transactivation activity retains antidiabetic properties in the absence of weight gain and edema. Mol. Endocrinol. 2009, 23, 975988.
(18) Shimaya, A.; Kurosaki, E.; Nakano, R.; Hirayama, R.; Shibasaki, M.; Shikama, H. The novel hypoglycemic agent YM440 normalizes hyperglycemia without changing body fat weight in diabetic db/db mice. Metabolism 2000, 49, 411-417.
(19) Rubenstrunk, A.; Hanf, R.; Hum, D. W.; Fruchart, J. C.; Staels, B. Safety issues and prospects for the future generation of PPAR modulators. Biochim. Biophys. Acta 2007, 1771, 1065-1081.
(20) Bruning, J. B.; Chalmers, M. J.; Prasad, S.; Busby, S. A.; Kamenecka, T. M.; He, Y.; Nettles, K. W.; Griffin, P. R. Partial agonists activate PPAR γ using a helix 12 independent mechanism. Structure 2007, 15, 1258-1271.
(21) Elbrecht, A.; Chen, Y.; Adams, A.; Berger, J.; Griffin, P.; Klatt, T.; Zhang, B.; Menke, J.; Zhou, G.; Smith, R. G.; Moller, D. E. $\mathrm{L}-764406$ is a partial agonist of human peroxisome proliferatoractivated receptor γ. J. Biol. Chem. 1999, 274, 7913-7922.
(22) Evans, D. C.; Watt, A. P.; Nicoll-Griffith, D. A.; Baillie, T. A. Drug-protein adducts: an industry perspective on minimizing the
potential for drug bioactivation in drug discovery and development. Chem. Res. Toxicol. 2004, 17, 3-16.
(23) Seto, S.; Kohno, Y. Chemoselective displacement of methylsulfinyl group with amines to provide 2-(alkylamino)-4,6-(disubstit-uted)pyrimidine-5-carboxylic acid. Heterocycles 2009, 78, 22632275.
(24) Biagi, G.; Giorgi, I.; Livi, O.; Pacchini, F.; Scartoni, V.; Salerni, O. L. New N^{6}-Substituted 8-alkyl-2-phenylmethylsulfanyl-adenines. II. J. Heterocycl. Chem. 2004, 41, 581-585.
(25) Bell, L.; McGuire, H. M.; Freeman, G. A. Chemistry of 5-pyrimidinecarboxaldehydes. J. Heterocycl. Chem. 1983, 20, 41-44.
(26) Shimadzu, M.; Ishikawa, N.; Yamamoto, K.; Tanaka, A. Studies on furan derivatives. XIV [1]. Nucleophilic substitution of methyl 5-nitro-2-furancarboxylate and 5-nitrofuran-2-nitrile. J. Heterocycl. Chem. 1986, 23, 1179-1182.
(27) Seto, S.; Tanioka, A.; Ikeda, M.; Izawa, S. Design, synthesis and evaluation of novel 2-substituted-4-aryl-6,7,8,9-tetrahydro-5 H -pyrimido[4,5-b][1,5]oxazocin-5-ones as NK_{1} antagonists. Bioorg. Med. Chem. 2005, 13, 5717-5732.
(28) Pochetti, G.; Godio, C.; Mitro, N.; Caruso, D.; Galmozzi, A.; Scurati, S.; Loiodice, F.; Fracchiolla, G.; Tortorella, P.; Laghezza, A.; Lavecchia, A.; Novellino, E.; Mazza, F.; Crestani, M. Insights into the mechanism of partial agonism. J. Biol. Chem. 2007, 282, 17314-17324.
(29) Nolte, C.; Wisely, G. B.; Westin, S.; Cobb, J. E.; Lambert, M. H.; Kurokawa, R.; Rosenfield, M. G.; Willson, T. M.; Glass, C. K.; Milburn, M. V. Ligand binding and coactivator assembly of the peroxisome proliferator-activated receptor γ. Nature (London) 1998, 395, 137-143.
(30) Oberfield, J. L.; Collins, J. L.; Holmes, C. P.; Goreham, D. M.; Cooper, J. P.; Cobb, J. E.; Lehmann, J. M.; Plunket, K.; Miller, A. B.; Milburn, M. V.; Kliewer, S. A.; Willson, T. M. A peroxysome proliferator-activated receptor γ ligand inhibits adipocyte differentiation. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 61026106.
(31) Burgermeister, E.; Schnoebelen, A.; Flament, A.; Benzs, J.; Stihle, M.; Gsell, B.; Rufer, A.; Ruf, A.; Kuhn, B.; Marki, H. P.; Mizrahi, J.; Sebokova, E.; Niesor, E.; Meyer, M. A novel partial agonist of peroxysome proliferator-activated receptor- $\gamma(\operatorname{PPAR} \gamma)$ recruits PPAR γ-coactivator-1a, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol. Endocrinol. 2006, 20, 809-830.
(32) Einstein, M.; Akiyama, T. E.; Castriota, G. A.; Wang, C. F.; McKeever, B.; Mosley, R. T.; Becker, J. W.; Moller, D. E.; Meinke, P. T.; Wood, H. B.; Berger, J. P. The differential interactions of peroxysome proliferator-activated receptor γ ligands with Tyr473 is a physical basis for their unique biological activities. Mol. Pharmacol. 2008, 73, 62-74.
(33) Tontonoz, P.; Hu, E.; Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR $\gamma 2$, a lipid-activated transcription factor. Cell 1994, 79, 1147-1156.
(34) Wu, Z.; Bucher, N. L.; Farmer, S. R. Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by $\mathrm{C} / \mathrm{EBP} \beta, \mathrm{C} / \mathrm{EBP} \delta$, and glucocorticoids. Mol. Cell. Biol. 1996, 16, 4128-4136.
(35) Thompson, G. M.; Trainor, D.; Tanen, M.; Biswas, C.; LaCerte, C.; Berger, J. P.; Kelly, L. J. A high-capacity assay for PPAR γ ligand regulation of endogenous aP2 expression in 3T3-L1 cells. Anal. Biochem. 2004, 330, 21-28.
(36) Tugwood, J. D.; Montegue, C. T. Biology and toxicology of PPAR gamma ligands. Hum. Exp. Toxicol. 2002, 21, 429-437.
(37) Liu, W.; Liu, K.; Wood, H. B.; McCann, M. E.; Doebber, T. W.; Chang, C. H.; Akiyama, T. E.; Einstein, M.; Berger, J. P.; Meinke, P. T. Discovery of a peroxisome proliferator activated receptor γ (PPAR γ) modulator with balanced PPAR α activity for the treatment of type 2 diabetes and dyslipidemia. J. Med. Chem. 2009, 52, 4443-4453.
(38) Acton, J. J.; Black, R. M.; Jones, A. B.; Moller, D. E.; Cowell, L.; Doebber, T. W.; Macnaul, K. L.; Berger, J.; Wood, H. B. Benzoyl 2-methyl indoles as selective PPAR γ modulators. Bioorg. Med. Chem. Lett. 2005, 15, 357-362.
(39) Rocchi, S.; Picard, F.; Vamecq, J.; Gelman, L.; Potier, N.; Zeyer, D.; Dubuquoy, L.; Bac, P.; Champy, M.-F.; Plunket, K. D.; Leesnitzer, L. M.; Blanchard, S. G.; Desreumaux, P.; Moras, D.; Renaud, J.-P.; Auwerx, J. A unique PPAR γ ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol. Cell 2001, 8, 737-747.
(40) Rossmann, M. G.; van Beek, C. G. Data processing. Acta Crystallogr. Sect. D 1999, 55, 1631-1640.
(41) Collaborative computational project number 4. The CCP4 suits: programs for protein crystallography. Acta Crystallogr. Sect. D 1994, 50, 760-763.
(42) Nolte, R. T.; Wisely, B.; Westin, S.; Cobb, J. E.; Lambert, M. H.; Kurokawa, R.; Rosenfield, M. G.; Willson, T. M.; Glass, C. K.; Milburn, M. V. Ligand binding and co-activator assembly of the peroxisome proliferators-activated receptor- γ. Nature 1998, 395, 137-143.
(43) Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. Crystallography and NMR system: A new software suite for
macromolecular structure determination. Acta Crystallogr. Sect. D 1999, 54, 905-921
(44) Rousell, A.; Fontecilla-Camps, J. C.; Cambillau, C. CRYStallize: a crystallographic symmetry display and handling subpackage in TOM/FRODO. J. Mol. Graphics 1990, 8, 86-88.
(45) Morris, A. L.; MacArthur, M. W.; Hutchinson, E. G.; Thornton, J. M. Stereochemical quality of protein structure coordinates. Proteins 1992, 12, 345-364.

[^0]: *To whom correspondence should be addressed. Phone: +81-280-562201. Fax: +81-280-57-1293. E-mail: shigeki.seto@mb.kyorin-pharm. co.jp.
 ${ }^{a}$ Abbreviations: PPAR, peroxisome proliferator-activated receptor; AF-2, activation function 2, TZD, thiazolidinedione; LDA, lithium diisopropylamide; LBD, ligand-binding domain; aP2, adipose fatty acid binding protein; PCR, polymerase chain reaction; IBMX, 3-isobutyl-1methylxanthine; DEX, dexamethazone, MIX, methylisobutyl xanthine; SEM, standard error of the mean; DMF, dimethylformamide; THF, tetrahydrofuran; mCPBA, meta-chloroperoxybenzoic acid

